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Abstract. The purpose of the present work is to
investigate whether the idea of epithelial fluid trans-
port based on electro-osmotic coupling at the level of
the leaky tight junction (TJ) can be further supported
by a plausible theoretical model. We develop a model
for fluid transport across epithelial layers based on
electro-osmotic coupling at leaky tight junctions (TJ)
possessing protruding macromolecules and fixed
electrical charges. The model embodies systems of
electro-hydrodynamic equations for the intercellular
pathway, namely the Brinkman and the Poisson-
Boltzmann differential equations applied to the TJ.
We obtain analytical solutions for a system of these
two equations, and are able to derive expressions for
the fluid velocity profile and the electrostatic poten-
tial. We illustrate the model by employing geometri-
cal parameters and experimental data from the
corneal endothelium, for which we have previously
reported evidence for a central role for electro-
osmosis in translayer fluid transport. Our results
suggest that electro-osmotic coupling at the TJ can
account for fluid transport by the corneal endothe-
lium. We conclude that electro-osmotic coupling at
the tight junctions could represent one of the basic
mechanisms driving fluid transport across some leaky
epithelia, a process that remains unexplained.

Key words: Zeta potential — Charge selectivity —
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Introduction

Fluid transport by epithelia is a fundamental process
for which definitive understanding has eluded physi-
ological research for many years. The idea that iso-
tonic fluid transport across leaky epithelia is based on
local osmotic phenomena has enjoyed favor among
physiologists, as recently reviewed by Reuss (Reuss,
2000; 2006 (in press)). However, transcellular local
osmosis is currently undergoing repeated questioning
(Loo, Wright & Zeuthen, 2002; Sanchez et al., 2002;
Shachar-Hill & Hill, 2002; Zeuthen, 2002; Hill
Shachar-Hill & Shachar-Hill, 2004). For instance, in
a recent model for an absorptive epithelium, isoto-
nicity of the absorbate requires an important com-
ponent of solute recirculation (Larsen, Sorensen &
Sorensen, 2002). As another alternative we have re-
ported evidence in favor of electro-osmotic coupling
as the basis of corneal endothelial fluid transport
(Sanchez et al., 2002). It is of course unclear whether
all fluid transporting systems may achieve isotonic
transport by similiar means. In secretory glands, or in
proximal kidney tubule, the geometry might allow
local osmotic mechanisms to play roles. However, for
flat leaky epithelia, given their relatively simpler
geometry, arguments against local osmosis and in
favor of alternative mechanisms appear stronger. In
this framework, the purpose of the present work is to
investigate whether the idea of epithelial fluid trans-
port based on electro-osmotic coupling at the level of
the leaky tight junction (TJ) (Sanchez et al., 2002) can
be further supported by a plausible theoretical model.

Studies on electro-osmotic coupling in epithelia
are scarce. In one of these studies the authors con-
cluded that electro-osmotic coupling at the lateral
intercellular space (LIS) was insufficient to accountCorrespondence to: J. Fischbarg; email: jf20@columbia.edu
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for fluid reabsorption (McLaughlin & Mathias,
1985). On the other hand, the rapid development of
fluid movements after application of electrical cur-
rents was taken as evidence for electro-osmosis across
the paracellular pathway of isolated rabbit ileum by
Naftalin and Tripathi (Naftalin & Tripathi, 1985).
The possible role of tight junctions in coupling was
stated in that study. That role was also touched upon
in a review about the paracellular shunt of the
proximal tubule in fluid transport (Weinstein &
Windhager, 2001), in which the authors mated that:
‘‘A number of mathematical models of the proximal
tubule, incorporating a permeable tight junction,
were fashioned to try to reveal a role for the para-
cellular pathway in solute-solvent coupling, but these
and subsequent models could not provide rationali-
zation as to why electrical leakiness should correlate
with the ability to transport isotonically’’.

In the case of the corneal endothelium, we have
recently argued that the LIS could not suffice for
electro-osmotic coupling, and that the prime candi-
dates for the site of such coupling were the leaky tight
junctions (Sanchez et al. 2002). The finding that the
mutagenic manipulation of charged residues in clau-
dins 4 and 15 can create cation-or anion-selective
channels in TJ (Colegio et al., 2002) is consistent with
this possibility. A possible role of the tight junctions
in water transport and in the regulation of Na+

transport by the proximal tubule epithelium has also
been discussed (Guo, Weinstein & Weinbaum, 2003;
Weinstein 2003).

Background For The Model

Leaky tight junctions are characterized by the pres-
ence of rows of proteins in the gap between opposing
cell membranes (Claude & Goodenough, 1973;
Claude, 1978). These protein structures seem to be
responsible for some of the junctional properties,
such as the resistance to the passage of water and
electrolytes and the charge selectivity (Colegio et al.,
2003; Cotegio et al. 2002). Therefore, this milieu
cannot be described by a simplified model of electro-
osmosis using the classical Helmholtz-Smoluchowski
treatment, which was originally developed for the
case of idealized capillaries with smooth surface
(Tikhomolova & Kemp, 1993).

More realistic approaches for other geometries
have already been developed in the fields of colloid
chemistry and biophysics, such as those applied to
electro phoresis and to the electro-kinetic behavior of
red blood cells and liposomes (Donath, Pastushenko
& Chizmadjev, 1978; Donath & Pastushenko, 1979;
Jones 1979; Wunderlich 1982; Levine et al., 1983). For
our case we combine two approaches, one to describe
water flow and another to represent the electrical field.
For the first one we utilize the Brinkman equation, a

hybrid between the Stokes and Darcy equations
(Brinkman 1947), to describe the water flow across the
TJ with its rows of protruding proteins. The Brinkman
equation was originally developed to describe the
hydrodynamics of water flow through polymeric lay-
ers, and has found its way into the modern physio-
logical literature (Tada & Tarbell, 2000; Broday,
2002). For instance, it has been employed to analyze a
hydrodynamic mechanosensory hypothesis for the
brush border microvilli (Guo, Weinstein & Wein-
baum, 2000). Secondly, we employ the Poisson-
Boltzmann equation to represent the electrostatic field
in the strand region of the TJ.

Some elements of our present approach can be
found in prior treatments. For example, Donath &
Voight studied the electrostatic potential distribution
in surfaces coated by a polyelectrolyte gel layer
(Donath & Voigt, 1986b). These authors derived
solutions for a system of hydrodynamic and electro-
static equations for the case of erythrocytes coated
with long charged molecules. Other authors have
investigated the influence of a gel layer coating on the
electro-kinetic phenomena and streaming potentials
in capillaries (Starov & Solomentsev, 1993; Starov,
Bowen & Welfoot, 2001). In particular, these authors
concluded that the Helmholtz-Smoluchowski equa-
tion becomes insufficient to describe that streaming
potential at high values of porosity of the gel coat;
they therefore modified that approach accordingly.
Similarly, a description of electro-kinetic flow in a
capillary with a charged surface layer has been ob-
tained by solving the linearized Poisson-Boltzmann
equation (Keh & Liu, 1995).

The strand area of the tight junction constitutes a
distinct phase characterized by the presence of the
fixed electrical charges carried by proteins such as
claudin (Colegio et al., 2002, 2003). As a conse-
quence, electrical potential differences will arise be-
tween this phase and free solution. Electrical
potential differences in systems with fixed charges
have been the subject of classical articles by Teorell,
Meyer, and Sievers, as cited in a monograph
(Lakshminarayanaiah, 1984). In addition, in order to
understand the nature of the coupling process be-
tween the electrical current and the water flow at the
leaky tight junction, it is of utmost importance to
know the electrical conductivity at that level. As
discussed below, it can be shown that in a macro-
molecular phase (TJ strand area), the dielectric con-
stant of water will be lowered. Hence, in equilibrium,
the energy of ion-medium interaction will be higher
and the ionic concentration will be lower than in free
solution (Vorotyntsev et al., 1993; Vorotyntsev,
Rubashkin & Badiali, 1996; Bastug & Kuyucak,
2003). A general expression describing the electro-
static potential difference between microporous ion-
exchange membranes and the electrolyte solution,
and the influence of such potentials on electrokinetic
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phenomena, has been developed (Romm & Rubash-
kin, 1983; Rubashkin, 1989). That expression will be
employed here to analyze the potential drop between
the TJ and the free solution. Finally, we shall utilize
the Osterle method (Gross & Osterle, 1968) in order
to represent the complete electrical field in the strand
of the TJ as a sum of electromotive and quasi-equi-
librium components (‘‘electrostatic potential’’). This
method has been widely used in the analysis of elec-
trokinetic phenomena (Sasidhar & Ruckenstein,
1981; Starov & Solomentsev, 1993). Some of the
current findings indicating the theoretical possibility
of electro-osmotic coupling in the tight junctions
have been communicated in Abstract form (Fisch-
barg, Rubashkin & Iserovich, 2004).

Glossary

ABBREVIATIONS

HS Helmholtz - Smoluchowski
EO electro-osmosis
LIS lateral intercellular space
TJ intercellular leaky tight junction
Str strand regions in the leaky tight junctions

LATIN

c solute concentration in free solution
cfix concentration of fixed space negatively charged
centers in the strand regions of the TJ
CNa(x), CCl(x) concentrations of Na

+ and Cl) in the
strand region of the TJ [Eq. 6]
E1, E2 electrical fields (along the z direction) in the
LIS and the strand region of the TJ, respectively
F Faraday�s constant
h1, h2 width of LIS and TJ
I experimental value of the electrical current density
across the entire epithelial layer
I1, I2 electrical current densities in LIS and in TJ (I ·
porosity)
I2(Th) theoretical electrical current densities in TJ [Eq.
15c]
Kper permeability constant for TJ, [Eq. A2]
kfr friction coefficient between water and polymeric
get in TJ
L1, L2 lengths of LIS and TJ
LB Brinkman�s length for polymeric gel in TJ, [Eq.
A2]
LD Debye screening length in free solution and in LIS
[Eq. 12]
L2D Debye length in TJ, [Eq. 12]
Lstr combined length of strand regions in the TJ (in
the z direction)
NA Avogadro�s number
n1, n2, n coefficient of distribution (or partition) for an
ion between free solution and strand regions of the TJ
[Eq. 6]

Q experimental value of the water flow density across
the entire layer induced by a current density I.
Q1, Q2 water flow densities in LIS and in TJ (Q ·
porosity)
Q1HS water flow density in LIS by the HS equation
[Eq. 1]
Q2(Th) theoretical water flow density in TJ [Eq. 14a]
Rg gas constant
R total specific electrical resistance (LIS + TJ);
R = R1 + Rstr + R2

R1 specific electrical resistance of LIS = L1/(j S1)
Rstr, R2 specific electrical resistance in the TJ; strand
region: Rstr = Lstr/(j2 Sstr); non-strand region:
R2 = (L2 ) Lstr)/(j S2)
RTJ total specific electrical resistance of the TJ
(RTJ = Rstr + R2)
r, r2(Th) coupling coefficients between current and
fluid movements (experiment and theoretical) [Eqs.
2a, 14b, 16]
S1 average cross section of the LIS (for 1 cm2 of the
cell layer)
S2 cross section of the TJ (for 1 cm2 of the cell layer)
Sstr cross-section of the strand region of the TJ
T absolute temperature
Th, exp suffixes indicating theoretical and experi-
mental values
tNa, tCl transference numbers for Na

+ and Cl) in free
solution
UNa, UCl ion mobilities
v2(x) velocity of water in TJ
DV potential difference (electromotive force)
DV1 potential difference along the LIS
DV2 potential difference across the strand region of
the TJ
w1, wstr porosity (1/S1; w1 S1/Sstr) of the LIS, and of
the strand region of the TJ of the corneal endothelial
layer
x, z coordinates normal, parallel to the direction of
water flow in the TJ
y(x) [/(x))/D], difference between electrostatic and
phase potentials in the TJ strand region; [Eqs. 10a,
11, 13a, 13b]
zfix charge number for TJ strands

GREEK

b ratio between concentrations of fixed space charges
in the strand region of the TJ, and the bulk medium
(b = cfix/c)
e water dielectric constant at 35�C
e0 permittivity of free space
g viscosity of water
j conductivity in free solution of NaCl at c = 0.15
mol/L
j2 conductivity in the TJ strand; Eq. 15a
f1 membrane zeta potential in the surface of the LIS
f2 membrane zeta potential in the surface of the TJ
q2(x) space charge density in TJ; [Eq. 11]
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qmov(x) space charge densities of the movable char-
ges; [Eqs. 7, 13b]
qfix [F zfix cfix], space charge density of macromole-
cules in strand regions of TJ
Pfix[qfix/(F c)], dimensionless fixed charge density in
the volume of the TJ strand regions
r2 surface charge density in the TJ membrane;
[Eq. 3a]
d2 d2 = h2/2, half-width of TJ
/D phase potential, Eq. 10b
w(x,z) total electrical potential
/(x,z) equilibrium component of the electrical
potential (electrostatic potential)
w(z) non-equilibrium component of the electrical
potential
lNa

(0), lCl
(0) standard chemical potentials of ions in

free solution (ion-solution energy of interaction)
lNa

(TJ), lCl
(TJ) standard chemical potentials of ions in

strand regions of TJ (ion-solution energy of interac-
tion)
DlNa

(0), DlCl
(0) difference in standard chemical

potential in free solution

Results and Discussion

THEORY

We consider a model epithelial layer, such as the one
pictured schematically in Fig. 1. We assume that the
concentrations of the solutions at the apical and
basolateral compartments in this model are equal.
This implies that small local gradients that cellular
transport of electrolytes may generate in the imme-
diate vicinity of line cell are neglected. (Sanchez et al.,
2002). We assume that the only asymmetry arises
from the polarized distribution of electrogenic
transporters and channels on both sides of the cell.
This results in an electrical potential difference across

the epithelial layer (for corneal endothelium: Fisch-
barg, 1972; Barfort & Maurice, 1974; Hodson, 1974),
which is the driving force for water transport in this
context.

BASIC ASSUMPTIONS AND GENERAL ASPECTS OF THE

ANALYSIS

In what follows, we shall advance theoretical argu-
ments to support the idea that the corneal endothelial
leaky tight junctions represent the sites at which
electrical flow generates water flow across that cell
layer. For that purpose, we shall refer to the scheme
depicted in Fig. 1 for a leaky epithelium in general.
As shown in Figs. 1 and 2, the paracellular pathway
consists of two channels in series, the lateral inter-
cellular space (LIS) and the leaky tight junction (TJ).
We shall analyze them separately.

STANDARD CURRENT AND WATER FLOW FOR THIS

ANALYSIS

Throughout this treatment we compare theoretical
results with those obtained from the experimental
application of electrical current across in vitro rabbit
corneal endothelium. We assume the application of
the experimental current density in all cases,
I = 10.5 lA cm)2, which, as we have demonstrated
(Sanchez et al., 2002; Fig. 3 in that paper), will induce
a fluid flow of Q = 2.48 lL hr)1 cm)2 = 6.9 nm s)1.

THE CONTRIBUTION OF ELECTRO-OSMOSIS-IN THE

LATERAL INTRACELLULAR SPACE (LIS)

In contrast to the TJ strand region, the LIS is
relatively wide and devoid of protruding proteins in
significant amounts. Hence, the classical Helmholtz-
Smoluchowski (HS) approach can be used here
(Kruyt 1952; Hanter, 1981; Tikhomolova & Kemp,

Fig. 1. Diagram of a leaky epithelial cell layer, showing the tight

junctions as the site for electro-osmotic coupling. An electrical

current (I) and fluid movement (Q) traverse the paracellular

pathway. The epithelium transports fluid and electrolytes as a

secretory layer (in the ‘‘backwards’’ direction).

INTERCELLULAR SPACE TJ

L1 L2

h1 h2

CELL

CELL

Fig. 2. Schematic diagram of a region with two adjoining corneal

endothelial cells, highlighting the intercellular space and the leaky

tight junction separating them. The basal (stormal) side is at the

left, apical (aqueous) to the right. Symbols denoting dimensions are

explained in the glossary and the text.
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1993). For the LIS, the HS water flow density Q1

would be:

Q1 ¼ � ee0E1f1

g
ð1Þ

We shall utilize Eq. 1 to obtain a value for Q1 (see
Glossary for the meaning of the rest of the symbols)
and to compare it with an experimental one. For
corneal endothelium, from our published experi-
mental date (Sanchez et al., 2002), the coupling
coefficient r between fluid and current movement is:

r ¼ Q

I
¼ 2:37� 108

lm3

hr lA
ð2aÞ

Due to the smaller across section, water flow in the
LIS is faster than in the bulk (see Fig. 1). From the
tissue geometry, the width of LIS is: h1 � 30 nm, and,
given the total perimeter of cells and the width of the
LIS, the relevant factor or ‘‘porosity’’ w of the rabbit
corneal endothelial layer is w = 92. As always in this
context, we assume the application of a steady cur-
rent of I = 10.5 lA cm)2 across the corneal endo-
thelium, resulting in a bulk translayer water flow of
value Q above. Hence, the water velocity Q1 in the
LIS will be:

Q1 ¼ w�Q ¼ 0:63lms�1

To compute the value of the electrical potential dif-
ference DV1 along the LIS required for Eq. 1 above,
we resort to Ohm�s law:

DV1 ¼ �w I L1

j
¼ �0:055 mV; ð2bÞ

In Eq. 2, j = 21.1Æ10)3 S cm)1 is the conductivity of
a NaCl solution calculated at c = 0.15 mol/L and
35�C (Harned & Owen, 1958, p. 234). L1 = 12 lm is
the length of the LIS. In this context, the electrical
current density in the LIS is I1 = IÆw = 962 lA
cm)2, and the electrical field along the LIS will be:
E1 = )DV1/L1 = 4.56 V/m, both relatively moder-
ate values. As for f1, from the literature, the zeta
potential (f) of typical cell membranes is approxi-
mately )15 mV (McLaughlin & Mathias, 1985), (al-
though smaller values have been reported, i.e.,
)9 mV (Pasquale et al., 1990)). Using a value of
f1 = )15 mV, plus values of: viscosity g = 6.9Æ10)3

poise, e = 78.5 and e0 = 8.85 pF m)1, from the HS
equation (Eq. (1) the theoretical EO water flow
(QIHS) in the LIS is: QIHS = 0.07 lm s)1, about 10
times smaller than the experimental value.
Hence, as mentioned above, Helmholtz-type electro-
osmosis in the LIS cannot generate the experimental
transendothelial water flow typically determined (e.g.,
Sanchez et al., 2002). For electro-osmosis to be pos-
sible, coupling would have to take place at the junc-
tions. For this reason, we turn to an analysis of the
water flow in leaky tight junctions.

ELECTRO-HYDRODYNAMIC MODEL OF THE LEAKY TIGHT

JUNCTION (TJ)

Figures 2 and 3 present schematically a model for the
TJ. As mentioned in the Introduction, the cell mem-
branes limiting the TJs possess surface electrical
charges. According to the Gouy-Chapman theory
(Kruyt, 1952; Hanter, 1981), the value of this charge
is given by:

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ee0RgT

p ffiffiffi
c

p
sinh

Ff2
2RgT

� �
: ð3aÞ

As mentioned above, the zeta potential of cell mem-
branes including those limiting the TJs is presumably
between )9 and )15 mV. Taking f2 = )10 mV, it
follows that Ff2/(2RgT) � 0.187, and we can
approximate the hyperbolic sine expression above.
Therefore, we write Eq. (3a) as:

f2 �
LD
ee0

r2; ð3bÞ

Importantly, for the strand region of the TJ a volume
electrical charge must also be considered in addition
to the surface charge (see Fig. 3). As mentioned
above, there is evidence (Colegio et al., 2003; Colegio
et al., 2002) that charges in claudins can be correlated
with charge-selectivity in the TJ. How the charges are
distributed spatially is not known in detail at this
time, as there are no known 3-D structures for TJ
proteins. Still, there is a TJ model (Van Itallie &
Anderson, 2004) in which claudin extracellular loops
protrude into the junction forming pores surrounded
by charged residues (cf. also Fig. 3B here).

We will therefore assume that the spatially fixed-
charge centers will be found where the rows of pro-
teins (strands) appear in the junction. In our
arrangement, there are fixed charges at uniform vol-
ume and surface concentrations (cfix and r2, respec-
tively) in the volume and membranes of the strand
regions of the TJ. In the rest of the volume in the
junction, in between the protein strands, the con-
centration of fixed charges in the volume is presumed
to be much less, while there will be surface charges r2

in the cell membranes.
In order to determine the water flow across the

TJ, it is necessary to know the density of movable
charges in that medium. The value of such density
will differ from the one in the LIS or free solution as a
consequence of the existence of a complex charged
macromolecular arrangement in the strand regions of
the TJ aqueous path. In addition, this fact also
determines the existence of important frictional
interactions between the ions and the macromolecules
in the TJ. For this reason the HS expression cannot
be used, and other expressions for the water flow and
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the electrical current traversing the TJ need to be
derived.

We model the membranes limiting the TJ as
parallel plates (see Fig. 3), with the x axis perpen-
dicular to the membrane surface and x = 0 located
at the center of the tight junction. We assume that, as
in other leaky epithelia (Claude & Goodenough,
1973; Claude 1978), the endothelial TJs have roughly
parallel strands or rows of macromolecules limiting
passage of water and solutes across it. Leaky epi-
thelial TJs tend to have only a few rows (fences) of
strands; we assume that there are three rows present
in our case (Fig. 3). For the width of the TJ we
choose a value of 45 Å. From hydraulic flows across
corneal endothelium, the TJ would be equivalent to
an idealized slit 39 Å wide and 1 lm long (Fischbarg,
Warshavsky & Lim, 1977). In addition, these TJ�s are
permeable to horseradish peroxidase (Kaye, Sibley &
Hoefle, 1973), for which we estimate a diameter of
45 Å. We have therefore assumed for the TJ a width
h2 of 45 Å, while the restrictions in the strand regions
would decrease that width by 20%.

The characteristics of the strand region essen-
tially determine the electrical resistance of the entire
TJ. The specific resistance of both freshly excised and

cultured corneal endothelial layers is about 25 ohm
cm2. Recent data (Kuang et al., 2004) indicate that,
of such total, the TJ contribute �20 and the LIS �5
ohm cm2.

ELECTRICAL FIELD ACROSS THE STRAND REGION

In developing the model, we need to set a value for
the combined length of the strand region in the TJ
(Lstr). With the other parameter values chosen, cor-
respondence between theory and experimental results
(cf. Figs. 4 and 5) is achieved if Lstr = 100 nm, or
10% of the total TJ length L2. If the stand regions are
formed only by the three strands exemplified in
Fig. 3, assuming that the proteins involved are �30 Å
wide, juxtaposition of all three would yield only
�10 nm instead. This difference may mean that
additional macromolecules may be protruding into
the TJ, or that yet unspecified characteristics of the
TJ somehow optimize its behavior towards electro-
osmotic coupling. Given the value of 100 nm set for
Lstr, the electrical field across each of the strand re-
gions will be very large (�1 kV/m), and will be
determinant in the generation of electro-osmotic
coupling.

Fig. 3. Schematic diagram of the leaky tight

junction. Junctional width is h2�45 Å, and

junctional length is L2�1 lm. (A) Three rows of
charged structures (e.g., claudins) bearing negative

charge are shown as thin protrusions. The

combined length of strand regions is Lstr � 0.1 lm
(not shown; for the possible 3-D appearance of

these protrusions, see Van Itallie & Anderson,

2004). There are also structural elements

protruding into the junction (e.g., cadherins,

occludins; not shown). The diagram also shows the

fixed negative charges lining the walls of the

junction, which are accounted in our treatment as

the zeta potential fm. For simplicity, only positive

movable charges are shown (circles with arrows).

Movements of positive charge (I) and resulting

electrical osmotic fluid movement (Q) are also

depicted (B). Side view at the plane of one of the

strands above.
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There will also be segments of the TJs in between
strands (Fig. 3). The fixed charges present in the TJ
membranes in there would add an electro-osmotic
component upon the passage of current. However,
the field would be relatively small, like that in the
calculation of HS electro-osmosis in the LIS [Eq. 1].
Calculations show that such a component would be
of the order of 5% of the water flow through the TJs;
we have therefore chosen to neglect it.

THE MODIFIED BRINKMAN EQUATION

The Reynolds number for the water transport across
epithelial layers is generally very small (McLaughlin
& Mathias, 1985) (as are the water velocities), hence
the inertial terms of the Navier-Stokes equation are
negligible by comparison with the viscous terms. For
this reason, instead of the Navier-Stokes equation, we
need to utilize an alternative version of the Stokes
equation (Happel & Brenner, 1983). For the water
flow across the strand region of the TJ we employ the
Brinkman equation (Brinkman, 1947), an expression
originally developed to describe flow across
polymeric media. As mentioned, the Brinkman
equation is a hybrid between the Stokes and Darcy
equations. It considers the following basic aspects: a)
the existence of friction between water and the mac-
romolecular media; and b) the existence of a water
velocity profile v(x) normal to the membranous wall.
In our case, the Brinkman differenitial equation for
the fluid flow velocity v2 in the strands of the TJ reads
(see Glossary for the meaning of the symbols):

g
d2v2

dx2
þ E2 qmov xð Þ � kfr v2 xð Þ ¼ 0 ð4aÞ

with boundary conditions (d2 ¼ h2=2):

v2 �d2ð Þ ¼ v2 d2ð Þ ¼ 0 ð4bÞ

The second term in Eq. 4a represents the force ex-
erted by the movable electrical charge on the water;
this term is absent the original Brinkman equation. If
the third term is also absent Eq. 4a becomes the
classical Stokes equation. As can be seen, the elec-
trical force term of Eq. 4a is given by the product
between the TJ electrical field and the volume density
of the movable charges. Therefore, we need to derive
expressions to evaluate their values. As we do this
below, according to the Osterle method (Gross &
Osterle, 1968), the electrical potential Y will be
understood to include two parts, equilibrium /
depending on the fixed charges, and non-equilibrium
w, the translayer potential difference giving rise to the
electrical current I:

W x; zð Þ ¼ w x; zð Þ þ / x; zð Þ

In the case of Eq. 4a the field is generated by the non-
equilibrium electrical potential:

E2 ¼ � dw zð Þ
dz

PARTITION OF IONS IN THE TJ

A first step towards describing quantitatively the
physical chemistry of the fluid in the TJ regions is to
examine its ionic population. Due to the presence of
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determinations (Sanchez et al. 2002), as detailed in the text. The

graph is useful to delimit a set of parameter values for which there

is a resistance ratio of 1, signifying agreement between theory and

experiment.
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Fig. 5. Water flow across the endothelial layer as a function of the

partition coefficient ni for ions inside the strand region of the TJ.

Curves are computed for of three different values .assumed for the

normalized fixed space charge (b = cfix/c). The computed water

flow was normalized using that from experimental determinations

(Sanchez et al., 2002), as detailed in the text. The graph is useful

delimit a set of parameter values for which there is a resistance ratio

of 1, signifying agreement between theory and experiment
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macromolecules in this phase, we consider it to be
different from the ‘‘free solution’’ phase. Hence, the
standard chemical potential of an ion in the TJ
medium will be different from that in free solution.
This phenomenon can be understood by utilizing the
Born expression given in Eq. 5a below (as in Bastug
& Kuyucak, 2003) to calculate the interaction energy
between an ion and its medium. This energy is the
sum of all the interactions potentials, which include
van der Waals and image potentials. Hence, the
standard chemical potential of from in the TJ will
differ from that in free solution. In mathematical
terms for Na+ one has:

lTJNa � l 0ð Þ
Na ¼ NAe

2

2e0rNa

1

eTJ
� 1

e

� �
ð5aÞ

where rNa is the crystal radius of Na+, e is the
dielectric constant for water in free solution, and eTJ
is the dielectric constant for the TJ strand medium.

At equilibrium, equations for the relations be-
tween the electrochemical potentials of the sodium
and chloride ion in free solution and inside the TJs
can he written as:

l 0ð Þ
Na þ RgT ln cð Þ ¼ l TJð Þ

Na

þ RgT ln CNa xð Þð Þ þ Fu2 xð Þ

l 0ð Þ
Cl þ RgT ln cð Þ ¼ l TJð Þ

Cl

þ RgT ln CCl xð Þð Þ þ Fu2 xð Þ

ð5bÞ

In Eq. 5b, l(0) and l(TJ) represent the standard
chemical potentials of the corresponding ions in free
solution (0) and in the strand regions of the TJ,
respectively; c is the NaCl concentration in free solu-
tion. TheC(x)�s are the corresponding concentrations
at point ‘‘x’’ of the TJ, and U2(x) is the electrostatic
potential at the same position. We consider the elec-
trostatic potential of the free solution to be zero. To
be noted,U2(x) represents the equilibrium part of the
electrical potential in Eq. 4c.

From Eq. 5b, the concentration of each ion in the
strand regions of the TJ will be given by

CNa xð Þ ¼ cn1 exp �Fu2 xð Þ
�
RgT

� 	
;

n1 ¼ exp l 0ð Þ
Na � l TJð Þ

Na


 �.
RgT


 �
CCl xð Þ ¼ cn2 exp �Fu2 xð Þ

�
RgT

� 	
;

n2 ¼ exp l 0ð Þ
Cl � l TJð Þ

Cl


 �.
RgT


 �
ð6Þ

Here, n1 and n2 are partition coefficients. With the aid
of Eqs. 6 we can obtain the following expression for

the volume density of movable charges in the medium
of the strand region of the TJ:

qmov xð Þ ¼ Fc exp½ �Dl 0ð Þ
Na � Fu2 xð Þ
RgT

�
 

� exp½ �Dl 0ð Þ
Cl þ Fu2 xð Þ
RgT

�
!

ð7Þ

To be noted, in Eq. 7 the l�s can be interpreted in
terms of the difference in the energies of interaction
between ions and medium in LIS and the TJ strand
regions. Such interaction energies have been em-
ployed previously (Starov et al., 2001; Starov &
Solomentsev, 1993) in order to analyze electrokinetic
phenomena. This can be used to simplify Eq. 7. To
this end, we assume here that, both for the sodium
and chloride ions, the terms exp()Dl(0)) of Eq. 7
approximately equal the partition or distribution
coefficient n (we assume, for simplicity, that
n1 = n2= n see Glossary). Under this assumption
substitution of the movable charge from Eq. 7 into
the Poisson equation yields an equation for the
electrostatic potential in the strand region of the TJ:

d2u2

dx2
¼ � 1

ee0
Fcn exp �Fu2 xð Þ

�
RgT

� 	��
� exp Fu2 xð Þ

�
RgT

� 		
þ qfix� ð8Þ

The boundary conditions are given by the
application of the Gauss condition at the membrane
of the TJ strand regions:

du2

dx
�dð Þ ¼ � r2

ee0
;

���� du2

dx dð Þ

��� ¼ r2
ee0

ð9Þ

Since the surface charge density is comparatively
small, we can linearize equation 8. For this, we
introduce a new variable y(x) defined as:

y xð Þ ¼ u2 xð Þ � uD ð10aÞ

Here, y(x) is the difference between the electrostatic
potential at x and a newly defined UD phase potential
between the free solution and the strand region of the
TJ. This phase potential UD is given by:

uD ¼ �RT

F
ln � zfixcfix

2nc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zfixcfix
2nc


 �2
þ 1

r !
ð10bÞ

As mentioned above, the membrane surface charge is
small. Hence, the electrical potential difference y(x)
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Eq. 10a is also sufficiently small [i.e., (FÆy(x)/
RgT)<<1]. This allows us to obtain the desired lin-
ear approximation for the total volume charge den-
sity (movable plus fixed, to go into Poisson�s
equation) for the strand region of the TJ (Eq. 7):

q2 xð Þ ¼ F cn exp �Fu2 xð Þ
RgT

� �
�c n exp Fu2 xð Þ

RgT

� ��

þ zfixcfix� ffi � y xð Þ
LD2ð Þ2

ee0ð Þ ð11Þ

In this expression LD2 is the Debye length in the
strand regions of the TJ. It depends on the phase
potential and on the Debye length LD in free solution
(see Glossary) as follows:

LD ¼
ffiffiffiffiffiffiffiffiffiffiffi
ee0RgT
2cF

q
; LD2 ¼ LDffiffi

n
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh FuD=RgTð Þ
p ð12Þ

From Eqs. 12, the Debye length in free solution is
�8 Å (c = 0.15 mole/L), but in the TJ strand regions
it will be larger. At relatively small parameter n val-
ues, if the fixed charges are present only in the
membranes, the electrostatic potential from one
membrane will influence the opposite membrane, and
there will be overlap between the diffuse segments of
the double layers. As a result, the concentration of
counterions will exceed that of co-ions, and the TJ
will exhibit large selectivity.

From Eqs. 3b, 8, and 11, we can obtain the fol-
lowing expression for the distribution of the electro-
static potential in the TJ:

y xð Þ¼ 1mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n cosh FuD=RgTð Þ

p
 !

cosh x=LD2ð Þ
sinh d2=LD2ð Þ;u2 xð Þ ¼uDþy xð Þ

ð13aÞ
From Eq. 11, the density of movable charges in the
strand regions of the TJ is given by

qmov xð Þ¼F CNa xð Þ�CCl xð Þ½ �ffi�zfix Fcfix� ee0ð Þ y xð Þ
LD2ð Þ2

ð13bÞ
WATER FLOW AND COUPLING COEFFICIENT

Using the movable charge density obtained in
Eq. 13b, the Brinkman equation Eq. 4 can be solved
to yield Eq. A3a for the water velocity profile in the
TJ. A detailed treatment is shown in Appendix A. In
summary, integration of Eq. A3a across the width of
the TJ yields the following expression (cf. Eq. A4c)
for the theoretical water flow across the TJ:

Q2 ¼ �FcfixE2

g
LBð Þ2f � ee0E212

g
p ð14aÞ

The value of Q2(Th) is used in the expression Q2(Th)/
Q2(exp) to generate the data shown in Fig. 5. It is
also useful to calculate the theoretical coupling ratio
for the junction:

r2 Thð Þ ¼ Q2 Thð Þ
I2 Thð Þ ð14bÞ

To be noted, for the Brinkman length in Eqs. 14a
and 16 we take: LB = 45 Å, since this parameter (see
Appendix A) characterizes the friction of water with
the TJ and should be of the order of the width of the
TJ, set at 45 Å. In Eq. 14a, f (defined in Eq. A4b) is a
function of the width of the TJ and of the Brinkman
length LB (defined in Eq. A2), while p depends on the
Debye length in the TJ, the width of the TJ, and the
Brinkman length (see Glossary and Eqs. A4a - A4b).
The first term in Eq. 14a represents the influence of the
volume charge on the generation of volume flow by
the electrical field in the TJ. The second term is similar
to the Smoluchowski equation with one important
difference: the parameter p takes into account the
friction between water flow and the macromolecules
in the volume of the tight junction. In addition, from
Eqs. 12 and A4b, p goes approximately like 1/n; this
will explain some of the results below.

ELECTRICAL CONDUCTIVITY IN THE TJ

We will now evaluate the electrical conductivity j2 of
the strand regions of the TJ and the electrical current
density across it. An expression for it can be obtained
by integrating the ionic concentration profiles along
the cross section of the TJ (see Appendix B):

j2 ¼ F2nbc UNae
�FuD=RgT 1 � a

F12
RgT

� ��

þ UC1e
FuD=RgT 1 þ a

F12
RgT

� ��
ð15aÞ

InEq. 15a, the factor b represents the fraction bywhich
the ionic mobility in the TJ strand region is less than
that in free solution. In Appendix B we give an esti-
mate, from which b� 0.45. This allows one to find the
specific electrical resistance of the TJ strand region as

Rstr ¼ Lstr= j2Sstrð Þ ð15bÞ

As shown inAppendix B, using this expression one can
go on to compute the total theoretical resistance
[RTJ(Th)] of theTJ.The ratioRRJ(Th)/RTJ(exp) iswhat
is plotted in Fig. 4 is a function of the partition co
efficient for ions inside the TJ.
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Using .Eq. (15a), we can find the electrical cur-
rent I2 in the TJ. One has simply:

I2 ¼ E2j2 ð15cÞ

Substituting, into Eq. 14b, we will obtain the theo-
retical coupling ratio:

r2 Thð Þ ¼ �Fcfix
gj2

LBð Þ2f � ee012
gj2

p ð16Þ

Equations 14–16 constitute the main results of this
paper.

Discussion of the Results

The theoretical results are seen to depend on three
main parameters: the coefficient for ionic distribution
(‘‘partition coefficient’’) n, the surface charge density
at the TJ membrane as reflected in the membrane zeta
potential V2 and the dimensionless concentration of
fixed charges of the bulk of the TJ, b = cfix/c. We
consider the effects of these parameters on the specific
resistance of the TJ, and on the water flow.

As mentioned above, we used Eqs. 15a–15b to
calculate electrical conductivity and electrical resis-
tance of the TJ, and Eq. 14a to calculate water flow.
The results plotted in Figs. 4 and 5 are dimensionless,
as in both cases, the values calculated theoretically
were divided by the experimental values. To estimate
the experimental value of RTJ, we start from a re-
ported value of 28.5 ± 0.6 ohm cm2 for the total
specific resistance of rabbit corneal endothelial cells
cultured for two weeks (Kuang et al., 2004). We then
compute the specific resistance of the LIS (R1 = L1/
(jS1 = 5.2 ohm cm2), and we obtain as the difference
an estimate of RTJ = 22.6 ohm cm2. For the junc-
tional flow density (or flow velocity), we calculate
Q2 = Q · wstr = 18.8 lm s)1.

Figs. 4 and 5 show these results. In Fig. 4, as the
partition coefficient increases, the ionic concentration
in the TJ would be expected to increase, causing a
decrease in Rth and hence in the ratio Rth/Rexp. All
three curves show such, decrease. As for the depen-
dence ofRth/Rexp on fixed space charge concentration,
as that charge increases, the counterion concentration
would be expected to increase, producing again a
decrease in Rth and hence in the ratio Rth/Rexp. Once
more, the data conform to the expectation.

In Fig. 5, events are somewhat more complex. As
the partition coefficient increases, again the ionic
concentration in the TJ and hence the junctional
conductance would be expected to increase. However,
in all cases, this results in a decrease of the theoretical
water flow (and of Qth/Qcxp). A reason for this can be
gleaned from Eq. 16 for the theoretical coupling ratio
(water flow per unit current). In it, the junctional
conductance j2 is in the denominator (as well as the

viscosity). Intuitively, conductance acts like viscosity:
the more of it the less efficient the system is at gen-
erating water flow. As for space charges, there is a
cross-over at n = 0.13. For larger n values, increas-
ing space charges increase Qth/Qexp. This improve-
ment in water flow may be expected intuitively if
increased space charges would recruit additional
movable counterions to communicate the momentum
of their water shells to the fluid.

As can be seen, in Fig. 4 the predicted resistance
decreases with space charge, while in Fig. 5 the pre-
dicted fluid flow increases with space charge. In both
cases, increasing the partition coefficient leads to a
worsening of the predictions. In spite of these com-
plexities, there is a region for which theory and
experiment agree for both R and Q. For the middle
curve in both figures, the value of the relative fixed
space charge b was set at 0.16 to emphasize this point;
in both cases, agreement is obtained with a value for
the partition coefficient of n � 0.19.

The picture that emerges therefore shows the
strand region of the TJ to be a place that ions pop-
ulate only with great difficulty, since the partition
coefficient n is relatively low compared with free
solution. The conductance in that region (calculated
with Eq. 15) is also relatively low, which is consistent
with the above; one has j2 = 0.13 j (see Appendix B
for further details).

Lastly, the EO process that occurs at the TJ
cannot be considered to correspond to a Schmid-type
of electro-osmosis (Schmid, 1950; Schmid & Schwarz,
1952). Such approach would not introduce the above-
mentioned modifications in the standard chemical
potentials, an effect that we consider to play a rele-
vant role in the process of electro-osmotic coupling at
the leaky tight junction. Besides, the occurrence of a
Schmid-type of electro-osmosis at the level of the
leaky tight junction would require very large con-
centrations of fixed electrical charges, of the order of
the concentration of electrical charges in free solu-
tion. As mentioned above, the results in Figs. 4 and 5
suggest otherwise, as best agreement is found for a
b value of � 0.19. In addition, recent evidence also
tends to militate against this, as changes in the sign of
a single claudin residue can significantly modify the
cation-anion selectivity of the TJ (Colegio et al.,
2002). One would expect such change to be drowned
out if b would be relatively large.

Summary and Conclusions

The mere fact that in spite of the difficulties of this
analysis it is possible to find a constellation of
parameters for which theory agrees with experiment
appears quite significant. The analysis performed in
this study allowed us to develop a novel formal basis
to describe electro-osmotic water flow across the tight
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junctions of leaky epithelia. The application of this
theoretical analysis to the case of the corneal endo-
thelium supports our prior conclusion that isosmotic
water flow across this tissue fundamentally occurs via
electro-osmotic coupling across the leaky tight junc-
tions. The water flow is therefore ultimately the
consequence of the physiological maintenance of an
electric potential difference across the overall tissue.

From this analysis, efficient electro-osmotic cou-
pling would occur due to unique environmental
characteristics to be found only in the strand regions
of leaky tight junctions. The picture that appears here
is that of a milieu relatively depopulated of ions, and
subject to a very intense transverse electric field. These
are two conditions that emerge as necessary in this
context. As an interesting corollary, if the fluid being
transported would acquire the local concentration in
those regions, it would emerge substantially hypo-
tonic. There is some evidence that this may be so, as
the coupling coefficient for small currents (I < 4 lA
cm)2) appears larger than the overall coupling coef-
ficient calculated for the data (cf. Fig 3 in Sanchez
et al. 2002). Of course, the hypotonic fluid thus gen-
erated would lend to be equilibrated via osmotic flows
across both apical and basolateral cell membranes.

In conclusion, we propose that for some leaky
epithelia, electro-osmotic coupling at the tight junc-
tions could represent one of the basic mechanisms
driving fluid transport.
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in part by Research to Prevent Blindness, Inc. JAH
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(Universidad de la República and Ministerio de Ed-
ucación y Cultura, Uruguay).

Appendix A

VELOCITY OF WATER FLOW AT THE LEAKY TIGHT

JUNCTION

By replacing Eq. 13b, we can obtain the following
version of the Brinkman equation Eq. 4:

d2v2

dx2
� v2ðxÞ
ðLBÞ

2
þ 1

g
½E2FcfixÞ� �

E2ðee0Þ
gðLD2Þ

2
yðxÞ ¼ 0 ðA1aÞ

v2ðd2Þ ¼ 0; v2ð�d2Þ ¼ 0; ðd2 ¼ h2=2Þ ðA1bÞ

The boundary conditions Eq. A1b imply that there is
no water movement at the level of the TJ membranes.
The Brinkman�s length LB Eq. A1a depends on
viscosity and friction, and is a characteristic of TJ
medium. It is given by

LB ¼
ffiffiffiffiffiffi
g
kfr

r
¼

ffiffiffiffiffiffiffiffiffi
Kper

p
ðA2Þ

The parameter Kper (Eq. A2) has dimensions of
area, corresponding to the fractional void volume of
the TJ macromolecular media. For known geometries,
it can be computed, as in Happel and Brenner (1983).
Here, we simply took LB to correspond to a charac-
teristic length in the TJ, namely, LB = h2 = 45 Å. As
an example, this would result from a TJ in which
spheres of 4 Å in diameter would occupy 0.0065 of the
volume, which appears consistent with the geometry
depicted schematically in Fig. 2.

The solution of Eqs A1a–A1b is of the form

v2ðxÞ ¼ V
ð1Þ
2 ðxÞ þ V

ð2Þ
2 ðxÞ ðA3aÞ

with

V
ð1Þ
2 ðxÞ ¼ � 1

g
½E2Fcfix�

½coshðx=LD2Þ � coshðd2=LD2Þ�
L�2
D2 coshðd2=LD2Þ

(A3b)

V
ð2Þ
2 ðxÞ ¼ ee0E2

g
b12
c2

coth
d2
LD2

� �
coshðx=LBÞ
coshðd2=LBÞ

� coshðx=LD2Þ
coshðd2=LD2Þ

� �
ðA3cÞ

We define some auxiliary parameters (c1, c2, a, f,
and p):

c1 ¼ 1� LB
LD2

coth
d2
LD2

� �
tanh

d2
LB

� �� �
; c2

¼ 1� LD2
d2

� �2
" #

ðA4aÞ

a ¼ LD2
d2

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n coshðFuD=RgTÞ

p ; f

¼ 1� LB
d2

tanh
d2
LB

� �
; p ¼ a

c1
c2

ðA4bÞ

We obtain the water flow in the TJ by integrating
Eq. A3a across the TJ width h2, and dividing by h2.
This leads to the result desired, the theoretical water
flow though the TJ, already shown in Eq. 14a:

Q2ðThÞ ¼
1

h2

Zd2
�d2

½Vð1Þ
2 ðxÞ þ V

ð2Þ
2 ðxÞ�dx

¼ FcfixE2

g
ðLBÞ2 f�

ee0E212
g

p ðA4cÞ
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Appendix B

ELECTRICAL CONDUCTIVITY OF THE LEAKY TIGHT

JUNCTION

As mentioned in the main text, the electrical con-
ductivity of NaCl in free solution, for a concentration
c = 0.15 mol/L, equals (j = 21.1 Æ 10)3 S/cm. The
transference numbers of Na+ and Cl) are tNa = 0.38
and tCl = 1-tNa respectively. The tonic mobilitics are
related to the electrical conductivity according to

j ¼ cF2ðUNa þUClÞ ðB1Þ

From Eq. B1, we can calculate the correspond-
ing ionic mobilities as UNa = (j tNa/cF

2) and
UCl = (j tCl/cF

2). The concentration of each ion in
the TJ medium can be determined from Eq. 6. The
electrical conductivity of the strand region of the TJ is
given by:

j2 ¼
nbcF2

h2

Zd2
�d2

UNa exp �Fu2ðxÞ
RgT

� ��2
4

þUCl exp
Fu2ðxÞ
RgT

� �
Þdx
�

ðB2aÞ

The factor b arises from the volume occupied by the
strands protruding into the TJ. If vp is the fractional
volume occupied by the strands, it has been shown
(Riande, 1972) that:

b ¼ ð1� vpÞ
ð1þ vpÞ

� �2
ðB2bÞ

For our case, we chose b = 0.45, corresponding to
vp � 0.2. This appears consistent with current views
on the geometry of TJ strand regions (cf Fig. 3 in Van
Itallie & Anderson, 2004).

The distribution of the electrical potential in the
strand region of the TJ (Eq. 13a) can then be used to
integrate Eq. B2a:

j2 ¼
nbcF2

h2
UNa exp �FuD

RgT

� � Zd2
�d2

1� yðxÞ
RgT

� �
dx

2
4

þUCl exp
FuD
RgT

� � Zd2
�d2

1þ yðxÞ
RgT

� �
dx

#
ðB3Þ

Substituting for y(x) from (Eq. 13a), Eq B3 can
be integrated to yield the expression for the electrical
conductivity of the stand region of the TJ shown in

the main text (Eq. 15a).

j2 ¼ F2nbc UNae
�FuD=RgT 1� a

F12
RgT

� �
þUcle

FuD=RgT

�

1þ a
F12
RgT

� ��
ðB4Þ

Having the conductance j2, the values of interest can
now be computed. The specific electrical resistance of
the TJ strand region is:

Rstr ¼
Lstr

j2Sstr
ðB5Þ

The resistance R2 of the rest of the TJ is:

R2 ¼
ðL2 � LstrÞ

jS2
ðB6Þ

The total resistance of the TJ is:

RTJ ¼ Rstr þR2 ðB7Þ

This is the resistance value that is to be compared to
those from experiments. The voltage jump DVstr and
the field Estr across the strand regions are:

DVstr ¼ �Rstr  I; Estr ¼ �DVstr
Lstr

ðB8Þ

The field value is used in Eq. 14a to compute water
flow.
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