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Abstract

The mechanism of apoptotic cell volume decrease
was studied in rat thymocytes treated with
dexamethasone (Dex) or etoposide (Eto). Cell
shrinkage, i.e. dehydration, was quantified by using
buoyant density of the thymocytes in a continuous
Percoll gradient. The K* and Na* content of cells from
different density fractions were assayed by flame
emission analysis. Apoptosis was tested by
microscopy and flow cytometry of acridine orange
stained cells as well as by flow DNA cytometry.
Treatment of the thymocytes with 1 uM Dex for 4-5.5
h or 50 uM Eto for 5 h resulted in the appearance of
a new distinct high-density cell subpopulation. The
cells from this heavy subpopulation but not those with
normal buoyant density had typical features of
apoptosis. Apoptotic increase of cell density was
accompanied by a decrease in cellular K* content,
which exceeded the simultaneous increasein cellular
Na* content. Cellular loss of K* contributed to most of
the estimated loss of cellular osmolytes, but owing to
the parallel loss of cell water, the decrease in cytosolic

K* concentration was less than one third. Due to gain
of Na* and loss of cell water the cytosolic Na*
concentration in thymocytes rose following treatment
with Dex (5.5 h) or Eto (5 h) by a factor of about 3.6
and 3.1, respectively.

Copyright © 2005 S. Karger AG, Basel

Introduction

Programmed cell death or apoptosis is a physiological
mechanism providing removal of abundant, aged,
defective, infected or potentially harmful cells [1-7].
Hallmarks of apoptosis include cell shrinkage which is
considered to participate in the machinery eventually
leading to cell death [8]. Accordingly, excessive osmotic
cell shrinkage is a well known trigger of apoptosis [8, 9].
On the other hand, moderate osmotic cell shrinkage has
been shown to impede CD95 induced apoptosis [10],
pointing to a complex interaction of cell volume with
apoptosis signaling.

Apoptotic cell volume decrease requires cellular loss
of osmolarity [8]. In a variety of cells, apoptosis is indeed
paralleled by activation of K* and/or Cl- channels and
loss of K*, the major osmotically active intracellular
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component [4, 8, 11-20].

Apoptosis of Jurkat T lymphocytes following CD95
triggering or ceramide treatment is paralleled by activation
of the outwardly rectifying Cl- channel ORCC [21, 22],
inhibition of Na*/H* exchange [23], and release of the
osmolyte taurine [15, 24], effects favouring apoptotic cell
shrinkage [8]. Early cell shrinkage is, however, prevented
by initial inhibition of Kv1.3 [21, 25], the cell volume
regulatory K* channels of Jurkat lymphocytes [26].
Subsequent activation of Kv1.3 has been observed at a
later stage of apoptosis [27] leading to eventual apoptotic
cell shrinkage.

The influence of those events on intracellular
electrolyte concentrations remained uncertain, as most
preparations of apoptotic cells are heterogeneous and do
not allow precise quantification of cellular electrolyte
concentrations in a subset of cells. To overcome this
limitation, we quantified alterations of cell water content
by measuring buoyant density of cells in a continuous
Percoll gradient and determined K* and Na*
concentrations by flame emission analysis of cells
extracted from Percoll layer of known density. Parallel
determinations of cell water and ions allowed to estimate
cytosolic K and Na* concentrations and to assess the
contribution of K* and Na* to apoptotic cell shrinkage.

We studied well-known models of apoptosis in rat
thymocytes, such as the apoptosis induced by the
glucocorticoid dexamethasone (Dex) [28-30] and the
cytotoxic drug etoposide (Eto) [31-34]. Apoptosis was
examined using microscopy and flow cytometry.

Materials and Methods

Cell culture

Thymus was isolated from decapitated 1-2 month old rats.
Thymocytes were grown in RPMI 1640 medium (Biolot)
supplemented with fetal bovine serum (10%, Biolot, St.
Petersburg, Russia) and gentamicin G (100 pg/ml) and washed
by two-fold centrifugation at 100 g in the same medium.
Thymocytes at concentrations of 4-7 x 10° cells/ml were cultured
at 37°C, 5% CO, for 4-6 h. Apoptosis was induced by
dexamethasone phosphate (Dex; KRKA, Croatia) or etoposide
(Eto; Sigma, Taufkirchen, Germany). Stock solutions of Dex
(0.8 mM) and Eto (34 mM) in DMSO were added to yield final
concentrations of the drugs of 1 uM and 50 uM, respectively.
The final concentration of DMSO was 0.13 and 0.16%,
respectively.

Analysis of cell water content

Cell water content was determined by measurements of
buoyant density of cells in a continuous Percoll gradient
(Pharmacia, New Jersey, USA). The Percoll solution was

prepared by dilution of the initial stock solution with RPMI
medium up to 40-55% and addition of the 10-fold volume of
Hanks” medium to maintain osmolarity. The density gradient
was formed by centrifugation of the Percoll solution (2 ml) in
95-mm long tubes for 40 min at 2000 g (K-23 centrifuge, Janetzki,
Germany). The density marker beads of 1.049, 1.062, 1.075, 1.087,
and 1.098 g/ml (Sigma, Taufkirchen, Germany) were used for
control of the gradient that was about 0.005 g/ml/cm. 100 ul of
concentrated cell suspensions (20-50 x 10° thymocytes) were
placed on the surface of the Percoll solution and centrifuged
for 10 min at 400 g (MPW-340 centrifuge, CHEMARGO,
Blachownia/Czéstochowy, Poland). After isopyknic distribution
of the cells in a density gradient, the fractions were collected
by pipette and placed into 1.5 ml Eppendorf tubes. Then they
were diluted 4-6 times with RPMI medium and spun for 5 min at
300 g (MPW-310 centrifuge, CHEMARGO, Blachownia/
Czéstochowy, Poland). Cells were resuspended in the RPMI
medium and used for microscopy, flow cytometry, and
determination of ion concentrations.

Water content per g protein, v, was calculated as v =
(1-p/p dry)/ [0.65(p-1)], where p is the cell buoyant density and p iry
is the cell dry mass density taken as 1.45 g/ml. The ratio of
protein to dry mass was taken as 0.65. The calculated water
content could be higher or lower by about 10% if p,  was taken
as 1.50 or 1.40, respectively. Relative changes of cell water do
not depend on the value of p, [35]. Buoyant density of cells is
the most sensitive and reliable method for determination of cell
water, as a difference in density by 0.005 g/ml that corresponds
to a change in cell water content by about 10% leads to
displacement of cells by approximately 1 cm in the gradient
tube.

Determination of ion content

The cells were pelleted and washed in MgCl, solution (96
mM) 5 times without resuspension. The pellets were treated
with 1 ml of 5% trichloroacetic acid (TCA) for 30 min and TCA-
extracts were analyzed for [K*] and [Na*] by emission
photometry in an air-propane flame using a Perkin-Elmer AA
306 spectrophotometer. Solutions of KC1 and NaCl (10-100 uM)
in 5% TCA were used as standard. TCA precipitates were
dissolved in 0.1 N NaOH and assayed for protein by the Lowry
procedure with serum bovine albumin as standard. The cell ion
content was calculated in mmol per g of protein.

Flow cytometry

For staining with acridine orange (AO) and ethidium
bromide (EB), 10%ml cells were incubated for 15-20 min at room
temperature with AO (5 pg/ml) and EB (20 pg/ml). The forward
light scattering (FLS) and fluorescence intensity at 530 + 5 nm
(F,,,) and at > 620 nm (F,)) were determined using a flow
cytometer equipped with a mercury arc lamp and a filter of 450-
490 nm for fluorescence excitation and a Helium-Neon laser for
determination of FLS [36]. For determination of cell DNA content
the samples were placed into a solution containing 0.02%
EDTA, 15 mM MgClL, 0.1% Triton X-100, 20 pg/ml EB and
40 pg/ml oligomycin, pH 7.4, for 20-24 h at 4-6°C. Fluorescence
was measured at > 600 nm with excitation at 380-470 nm, using
flow cytometry [37].
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Fig. 1. Distribution of normal and
apoptotic thymocytes in continu-
ous Percoll density gradient and
ion content of thymocytes from
different fractions. Thymocytes J
were treated with 1 pM Dex for
5.5 h or with 50 uM Eto for 5 h.
Horizontal axis — ion content, J
mmol/g protein. Vertical axis —

Control

—
e

Dex

4%

density, g/ml. The position of cell

subpopulations in tubes with
density gradient (L = light, M =

Dengity, g/mL

middle, H = heavy) and their ion
contents are shown. Ion content -

66%

in cells of the middle subpopula-
tion of thymocytes treated with Dex
was obtained for cells with the

31%

same buoyant density as the con-
trol subpopulation with similar
density (M). Figures next to the
bars represent the relative size of
the respective subpopulation in %
of cellular protein. The mean

1.09-4

1.10-
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thymocyte diameter (um) is given
inside the bars. Two separate experiments.

Microscopy

Cell preparations were stained with AO and EB (similar to
that used for flow cytometry). Fluorescence and light
microscopy of the vital cell preparations were obtained using a
Mikmed-2 microscope (LUMAM PRO-11, LOMO, Russia)
supplemented with a CCD-camera and the filter set “Green”.
The cell size was determined by the area of maximal cell
projection (S), which was determined utilizing the IMAGEJ
program (NIH, USA). The diameter was calculated from the
formula d = 2(S/nJ)!2. Cells that were positively stained with EB
were excluded.

Statistical analysis
Results were analyzed by Student’s # test and considered
statistically significantly different at p < 0.05.

Results

Cell water content

Fig. 1 illustrates the distribution of thymocytes in
density gradient tubes before and after incubation of cells
with either Dex (1 uM, 5.5 h) or Eto (50 uM, 5 h). A
separate subpopulation of thymocytes with an increased
density appeared approaching protein portion of 31% upon
treatment with Dex, while 38%, after treatment with Eto.
The mean percentage of cell protein content in the Dex
and Eto apoptotic fraction were 31 = 2% (n = 9) and 38

+ 8% (n =5), respectively. The mean values of buoyant
density for different thymocyte subpopulations are
presented in Table 1. The water content per g of cell
protein in the M fractions of the control thymocytes was
found to be 5.6-6.1 ml/g depending on the rat. It dropped
to 4.1 and 4.2 ml/g in the apoptotic H thymocytes treated
with Dex and Eto, respectively. Comparison of apoptosis
after the 4- and 5.5-h incubation of thymocytes of the
same rats showed no statistically significant differences
in buoyant density or the cell K" and Na*content.

Apoptosis was examined by flow cytometry and
microscopy. Apoptosis of thymocytes treated with Dex
or Eto was evident from an increase of the subGl
component, by a sharp increase of fragmentation (Fr) in
the DNA histogram (Fig. 2), by changes in the two-
dimensional Red/Green flow cytogram obtained for viable
thymocytes stained with AO, and by a decrease of cell
diameters measured under microscope (Fig. 1). Cells from
the heavy subpopulation H differed by all these
characteristics from the cells with buoyant density
corresponding to that in control cells (L and M fractions).
The number of nonviable cells that could be stained by
ethidium bromide in the H fraction did not differ from
that in the L and M fractions. Invariably more cells in the
S-phase were found in the L fractions than in the M
fractions (Table 1).

Ions in Apoptotic Thymocytes
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Fig. 2. Flow cytometry of thymocytes

. . Thymocytes
treated with Dex (a) or with Eto (b). The () ymocyt
data were obtained in the same Control
experiments as in Fig. 1. Horizontal axis non-separated
— fluorescence at 530 nm in two- K/MNa=4.0
dimensional Red/Green histograms

. . DEX
(outer left), one-dimensional Green
. . . non-separated
histograms (middle left), forward light Kia=14
scattering in FLS histograms (middle '
right), and amount of DNA according to DEX
EB fluorescence in DNA histograms D=1063-69
(outer right). Vertical axis — fluorescence KMa=2.0
at 620 nm in two-dimensional Red/Green
histograms or the cell number in one- DEX
dimensional histograms. Symbols a, 3, D =1.087-98
EMla=09

Y, G,, sG,, S, and G, designate cell
subpopulations selected on the Red/ (b)

Green, Green fluorescence, and DNA Control
histograms. The Red/Green and Green D=1.048-55
histograms were obtained on cells stained EMla=47
with AO and EB. Buoyant densities (D) Control
and K*/Na* ratios (K/Na) for the D=1036r10-66
respective cell populations are given on Kfl\fa=?,3
the left of the graphs.
Etoposide
D=1.048-54
EMla=43
Etoposide
D=1.060-65
. KMNa=57
Cellular ion content
Apoptotic increase in cell density Etoposide
pointing to cell dehydration was D=1.083-24
. Ea=12
accompanied by a decrease of
cytosolic K™ and an increase of Etoposide
cytosolic Na* (Table 1). The K*/Na* non-separated
Eia=473

ratio decreased from 4.6-6.3 in the
control thymocytes of fraction M to
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1.0-1.3 in apoptotic cells of fraction
H. Most importantly, the K* loss
exceeded the accompanying Na*accumulation. Therefore,
the sum of K*and Na* contents decreased by about 0.24
mmol/g protein in thymocytes treated for 5.5 h with Dex
and by 0.32 mmol/g protein in thymocytes treated with
Eto. Apoptotic loss of cell water (volume) under
permanent osmotic equilibrium between cell and medium
implies isoosmotic exit of intracellular solutes and water.
In view of the amount of water lost and the osmolality of
the medium taken as 315 mosmol/l the total osmolyte loss
should be 0.57 mmol/g in the apoptotic thymocytes treated
with Dex for 5.5 h and 0.60 mmol/g in thymocytes treated
with Eto. Therefore, 42-53% of the apoptotic decrease
in the amount of intracellular osmolytes should be due to
the redistribution of K" and Na*. The overall contribution

of ions to apoptotic cell shrinkage could approach 84-
100%, if the displacement of K* and Na* were
accompanied by an equivalent loss of monovalent anions
such as Cl" and H,PO,.

The buoyant density, i.e. water content, in thymocytes
of the L and M fractions also correlated with the total
cellular K* and Na* content (R =0.786, SD = 0.533, P =
8.7 x 10*). Following Dex treatment the thymocytes from
the L and M fractions showed a small but statistically
significant decrease in the K* content and in the K*/Na*
ratio as compared with the same fractions of the control
population. This effect may be considered as the
“preapoptotic” alteration of thymocytes before the
stepwise transition into the dense fraction H.
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Buoyant

Water,

K+

Na*

9 5 + +
Cellsj density of mL/g mmol/g mmol/g El(M] I[ESI 1 K/ Na® DNA cytometry data
fractions  cells, p, g/mL  protein protein protein S/G: Gy/Gi Fr. %
Control L 1.051-1.063 (11) 7.3 0.98+0.04 0.2540.02 134 34 3.6£0.5(11) 0.2440.01(4) 0.08+0.01 1.940.5
Control M 1.064-1.073 (11) 5.9 0.9010,02a 0.1720.01° 152 29 5.620.4 (12)b 0.07£0.02 (5) P 0.07£0.01 1.6x0.3
Dex L 1.053 - 1.064 (9) 7.1 0.82i0,0]a 0.26%0.01 115 37 3.2£0.2(9) 0.25+0.01 (3)  0.07+0.01 2.940.6
Dex M 1.065 -1.074 (9) 58 0.74£0.01 0.25%x0.02° 127 43 3.320.3(9) 0.06t0.01 (4)b 0.06+0.01 3.0£0.2
Dex H5.5h 1.086 - 1.100 (9) 4.1 0A4]iO,O3a 0.42+0.02° 101 103 1.0+0.1 (9)a 0.11£0.02 (4) 0.03£0.004° 41£6.0°
Control L 1.056 - 1.066 (3) 6.8 0.92+0.11 0.24£0.03 135 36 41209 (3)
Control M 1.068 - 1.076 (3) 5.6 0.86£0.03 0.21£0.05 152 38 4.6x1.1(3)
Dex L 1.056 - 1.066 (3) 6.8 0.77£0.06  0.33%0.01 114 49 2.4+0.3 (3)
Dex M 1.067 - 1.076 (3) 5.6 0.75£0.11 0.29+£0.08 134 52 32+1.0(3)
DexH4h 1.086-1.100(3) 4.1 055£008° 051005 135 125 1202 (3)
Dex L 1.055 - 1.066 (3) 6.8 0.83+0.02 0.27+0.01 122 40 3.1£0.1 (3)
Dex M 1.068 - 1.075 (3) 5.6 0.76+0.02 0.22¢0.01 135 39 3.4+£0.3 (3)
Dex H5.5h 1.086-1.100(3) 4.1 049:008" 039+001° 120 96 13%03(3)°
Control L 1.049 - 1.059 (5) 7.8 0.95£0.09 0.24+0.05 122 31 4.5%0.7 (5) 0.36£0.04 (5) 0.09%0.01 3.6%0.8
Control M 1.063 - 1.070 (5) 6.1 0944004 0.17t0.03° 154 28 6.30.9 (5) 0.07£0.01 (5)b 0.05+0.01 29104
EtoL 1.049 - 1.057 (5) 8.0 0.93+£0.05 0.29+0.04 117 36 3.5£0.5(5) 0.3240.02(5) 0.10+0.02 6.6%1.3
Eto M 1.061-1.067(5) 60 091£0.07 025003 153 42 3.9t05(5) 0.112001(3)® 0074001  6.2%1.0
Eto H 1.082-1.098 (5) 42  0.4240.02° 037£0.03° 99 87 12¥0.1(5) 020£0.04(3)° 0.03%0.01  37#5.6"

Table 1. Water, K*, and Na" contents and ion concentrations
in cell water in rat thymocytes under apoptosis induced by
dexamethasone (Dex) or etoposide (Eto). Water content per g
protein, v, was calculatedas v, =(1-p/p, )/[0.65(p-1)], taking
the density of cell dry mass, Purys 1O be 1.45 g/mL and the
proportion of protein in the dry mass to be 65 %. Means +
SEM. Number of experiments, n, is indicated in parentheses.

Cell ion concentrations

Intracellular K* and Na* concentrations calculated
from cell water and cation content per g of protein are
shown in Table 1. The K* concentration per cell water
after treatment with Dex (5.5 hours) or Eto (4 hours)
decreased by about 34 and 36%, respectively. The Na*
concentrations under the same conditions increased by a
factor of 3.6 and 3.1, respectively. The relative increase
in the Na* concentration in apoptotic thymocytes was
significantly more pronounced than the decrease in the
K* concentration, as entry of Na* paralleled the exit of
water. It is to be pointed out that the relative changes of
the cell water content estimated from measurements of
buoyant density and thus the estimated alterations of
cellular K* concentration do not depend significantly on
dry mass density.

Discussion

Isolation of apoptotic thymocytes by isopyknic
centrifugation on density gradient has been used in the
study of apoptosis for a long time [38-40]. Separation of
thymocytes into distinct fractions according to their

The thymocytes were treated by 1 uM Dex for 4 or 5.5 h or
50 uM etoposide for 4.5-5 h. The data for comparison of 4 and
5.5 h incubation were obtained in the parallel experiments with
thymocytes of the same rats.

*the difference from the appropriate control value is significant
at P < 0.05; ® the difference from the control fraction L value is
significant at P < 0.05.

apoptosis susceptibility and a stepwise kinetics of the
thymocyte transition to apoptosis were shown by flow
cytometry and other methods [41-43]. Experiments with
continuous Percoll gradients like in Fig. 1 also allowed to
segregate sensitive from resistant thymocytes. Using a
continuous density gradient, we were able to estimate
simultaneously the intracellular water and ion contents of
thymocytes from different subsets. By this way, a
pronounced increase of Na* concentration and a relatively
small decrease of cytosolic K* concentration were found
in apoptotic thymocytes.

Previous estimates of cellular ion concentrations
during apoptosis used predominantly indirect approaches
and were qualitative rather than quantitative. Several
studies were based on determination of changes in the
cellular K* content with use of fluorescent probes PBFI
and SBFI and of changes in the cell size by light scattering
or by a Coulter counter [11, 43-47]. Earlier, Hughes and
collaborators [46] measured cellular K* content in
thymocytes during the Dex-induced apoptosis (1 pM,
2-8 h), using the K* sensitive fluorescent probe PBFI in
flow cytometry, utilizing mass-spectrometry, and applying
atomic absorption. They revealed a 95% reduction of the
PBFI fluorescence intensity in the subpopulation of

Ions in Apoptotic Thymocytes
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apoptotic thymocytes selected by forward and side light
scattering and a decrease of K concentration in the
apoptotic thymocyte subpopulation from 140 mM to 35
mM in control cells. In another study [11], the K* content
in Jurkat cells during apoptosis induced by anti-Fas
antibody was determined using the same methods. Only
shrunken, i.e. apoptotic cells showed a decrease of
fluorescence of the K*-sensitive PBFI probe. No
quantitative estimates of the K* content per cell or
concentration per cell water were carried out in this as
well as in the later studies from the same laboratory [48].
A decrease of PBFI fluorescence in mouse thymocytes
following induction of apoptosis by Dex was further
observed by Dallaporta and colleagues [45] demonstrating
that the K* content per cell assessed by flame photometry
dropped in apoptotic cells down to 1/3 of the value in
normal thymocytes, a value approached even in a
subpopulation of cells with normal forward and side light
scattering. Using flame photometry for determination of
K* and radioisotopes for evaluation of intra- and
extracellular water, Benson et al. [49] studied apoptosis
of lymphoblastoid CEM cells treated with Dex and
reported a decrease of the K* content per cell by 15%
and the same reduction in cell volume estimated using a
Coulter counter in spite of no increase in cell buoyant
density during the first 24 h of apoptosis. The K*
concentration in cell water found to be 305 mM in normal
and 270 mM in apoptotic cells seems too high in view of
the total osmolality of external media amounting to 300-
315 mosmol/l.

A marked decrease in the K* content and K*/Na*
ratio in apoptotic cells of different species were shown
with the aid of an X-ray elemental microanalysis [50-
55]. In parallel with the decrease of the total K™ and Na*
content, a pronounced reduction in the Cl and P content
was also found in apoptotic human monocytes [54]. As
apoptosis and necrosis are both associated with a
decrease in the K*/Na* ratio, the differences of element
ratios may not allow the discrimination between those
two types of cell death [52]. According to our
observations, the sum of K™ and Na* contents is lower in
shrunken apoptotic cells vs normal cells. In contrast the
sum should be higher in swollen necrotic cells. Indeed, a
decrease in the sum of K*and Na* contents in apoptotic
cells was observed when apoptosis was confirmed by
other markers. However, the quantitative analysis of the
relationship between cell shrinkage and a decrease in cell
K* content found in the X-ray microanalysis studies is
impeded by difficulties in determination of the amount of
cell water.

We believe that our study of the relationship between
changes of cell water and ion content during apoptosis is
based on more reliable estimates than flow cytometry
alone or X-ray microanalysis. The data obtained confirm
a concept that the decrease in potassium content is one
of the most significant factors leading to apoptotic cell
shrinkage. Since the loss of K™ is paralleled by a similar
loss of cell water, the cytosolic K* concentration
decreased only by about one third. Our estimates of the
cellular K* concentration during apoptotic shrinkage
appeared to contradict the suggestion that a decrease in
intracellular K* concentration plays a key role in regulation
of apoptotic enzymes, e.g. nucleases and caspases [56,
57]. The observed decrease of intracellular K* concen-
tration found in the apoptotic thymocytes in our
experiments is smaller than the decrease of K*
concentrations required to significantly modify activity of
these enzymes in cell-free systems. It should be kept in
mind, however, that the K* sensitivity of the enzymes
may be modified by other cellular components and that
the sensitivity in cell free systems may not quantitatively
reflect the intracellular effect of K™ on the enzymes.
Nevertheless, apoptotic changes in cytosolic Na*
concentration are much more pronounced than those in
K* concentration and may well contribute to the
stimulation of apoptosis [13].

To the extent that the loss of cations is paralleled by
the loss of monovalent anions such as Cl" and H,PO,,
the share of the monovalent ions in the total loss of cell
osmolytes underlying the apoptotic loss of cell water would
be dominant. However, apoptotic death is paralleled by
cytosolic acidification [23, 58] that decreases the negative
charge of proteins and thereby contributes to loss of
cellular anions. Thus, the exit of K* is presumably not
matched by similar exit of monovalent anions. The cellular
loss of osmolarity may at least partially be due to release
of organic osmolytes, similar to CD95 induced apoptosis
of Jurkat T lymphocytes [8, 15] or glial cells [59].
Interestingly, lack of the taurine transporter TAUT
interferes with apoptosis of erythrocytes [60].
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